Abstract
Structure, crystallization behavior, and magnetic properties of as-quenched and annealed Fe81.3Si4B13Cu1.7 (Cu1.7) alloy ribbons and effects of Nb alloying have been studied. Three-dimensional atom probe and transmission electron microscopy analyses reveal that high-number-density Cu-clusters and Pre-existing Nano-sized α-Fe Particles (PN-α-Fe) are coexistence in the melt-spun Cu1.7 amorphous matrix, and the PN-α-Fe form by manners of one-direction adjoining and enveloping the Cu-clusters. Two-step crystallization behavior associated with growth of the PN-α-Fe and subsequent nucleation and growth of newly-formed α-Fe is found in the primary crystallization stage of the Cu1.7 alloy. The number densities of the Cu-clusters and PN-α-Fe in melt-spun Fe81.3−xSi4B13Cu1.7Nbx alloys are gradually reduced with enriching of Nb, and a fully amorphous structure forms at 4 at.% Nb, although smaller Cu-clusters still exist. After annealing, 2 at.% Nb coarsens the average size (Dα-Fe) of the α-Fe grains from 14.0 nm of the Nb-free alloy to 21.6 nm, and 4 at.% Nb refines the Dα-Fe to 8.9 nm. The mechanisms of the α-Fe nucleation and growth during quenching and annealing for the alloys with large quantities of PN-α-Fe as well as after Nb alloying have been discussed, and an annealing-induced α-Fe growth mechanism in term of the barrier co-contributed by competitive growth among the PN-α-Fe and diffusion-suppression effect of Nb atoms has been proposed. A coercivity (Hc) ∝ Dα-Fe3 correlation has been found for the nanocrystalline alloys, and the permeability is inverse with the Hc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.