Abstract

Glass-ceramic, which has negligible dielectric loss, high mechanical strength, excellent drop resistance, low CTE, and low density for lightweight design, is the best option for the back cover of mobile devices in the 5 G era. Herein, the effect of P2O5 on the phase separation and crystallization of MgO–Al2O3–SiO2-TiO2 glass-ceramics is studied. The incorporation of P2O5 in the glass structure leads to phase separation, in which the P and Mg-enriched phase was formed in the glass matrix, and promotes the increase of Tg. With the increase of P2O5 content, the precipitated crystals change significantly. First, the silicate crystals (Mg2SiO4) disappear, whereas the phosphate crystals (LiMgPO4) emerge when 2 mol% P2O5 is introduced. Second, titanate crystal (MgTi2O5) can not be observed when 4 mol% P2O5 is introduced. The Ti5O9 crystals appear simultaneously with LiMgPO4 crystals and transform to rutile TiO2 crystals at high temperature. Interestingly, the needle-like rutile TiO2 crystals, which is 300 nm long and 20 nm wide, have been found in a glass with 4 mol% P2O5. The large L/D ratio of needle-like crystals increases the hardness significantly from 6.08 GPa to 7.14 GPa. Similar to other fiber reinforced composites, this needle-like crystals provide a new strategy to improve the mechanical properties of glass ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call