Abstract

Abstract Hydroxyapatite coatings were prepared on magnesium alloy AZ91D by pulsed electrochemical deposition. The effects of electrochemical deposition parameters such as pulsed voltage, electrochemical deposition time and electrolyte additive on the morphology, the microstructure, the composition, the coating thickness and electrochemical properties were tested. The results show that at 110 V, the coating with lower porosity, more homogeneous surface and nanometer particles can be obtained, which also has higher XRD diffraction peaks. The morphology and the microstructure of hydroxyapatite particles of the samples prepared in Ca-P electrolyte with NaNO 3 and H 2 O 2 addition at 110 V are optimized. The corrosion resistance of the prepared coating is enhanced in potentiodynamic polarization and electrochemical impedance tests. Moreover, immersion test results indicate that such a coating is beneficial to hydroxyapatite formation and enhancing the bioactivity in simulated solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call