Abstract

Elemental germanium was mechanically milled with magnesium oxide with the intention of forming disperse nanoparticulate germanium in a soluble matrix. The crystallite size was determined by x-ray diffraction (XRD) and Raman spectroscopy using a phonon confinement model. The crystallite size was found to decrease exponentially with milling time; however, the size determined by XRD was typically five to ten times greater than that by Raman. This was attributed to the presence of two separate crystallite sizes, which were averaged when using the Scherrer equation for the XRD data. Sonication of the powder resulted in the breakup of >20 μm aggregates into individual particles of approximately 40 nm. These particles are thought to compose a single crystal core with a crystallite size of approximately 28 nm surrounded by a layer of smaller crystallites (approximately 5 nm), which showed quantization during Raman spectroscopy. Separation of the germanium from the magnesium oxide was readily achieved using a simple acid leach, although some oxidation of germanium was evident when using an aqueous leach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.