Abstract

The formation and development of dry bands can best be studied by modifying the standard test procedures. When such controlled behavior is allied with synchronized optical and electrical recordings, then characterization of the pre-formative leakage current, the transient phenomena associated with partial arcs across dry bands, the location of partial arcs and the voltage drop across dry bands can be determined. Interpretation of test data is greatly aided by finite element computation of insulating structures with a conducting surface layer. When this layer is continuous, this allows straightforward prediction of dry band formation under wetting conditions. Following formation, dry bands can be represented by discontinuities in this layer. Simulation of dry bands with various lengths, when combined with the test data, enables partial arc voltage gradients to be quantified. These results will be discussed in the context of previous work on the pollution flashover mechanism of ceramic insulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.