Abstract

To investigate the molecular charge dynamics of polyoxometalate (POM) molecules, we formed and characterized a charge coupled structure with POM molecular particles and a GaAs-based nanowire. In our system, the charge sensitivity was locally increased by capacitive coupling between a metal tip and the POM particle. Surface dispersion of POM particles on the GaAs nanowire was carried out in a controlled manner by choosing an appropriate solvent and POM concentration. We found that, after POM surface dispersion, the current in the GaAs nanowire remarkably increased by charging the POM particles using a conductive atomic force microscopy tip. The current change strongly depended on humidity of the measurement environment. The nanowire current under capacitive coupling between the conductive tip and the POM particle on the nanowire surface showed steps with a height of approximately 70 nA, suggesting that multiple hole charging and discharging occurred in the particle in a synchronized manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.