Abstract

Different carbon and ceramic nanostructures (nanotubes, nanowires, nanofibres, nanorods, and nanoencapsulates) have great potential for improving our understanding of the fundamental concepts of the roles of both dimensionality and size on physical properties, as well as for many potential applications. Carbon nanotubes (CNTs) were produced in carbon arc plasma using different starting carbons, as the anode material. Low-graphitized carbons (including carbon black) proved to be much more efficient comparing to the regular graphite material. The optical emission and absorption spectroscopy was used for spectral diagnostics of the carbon arc. Carbon arc was also used to produce carbon onions containing magnetic nanocrystallites (Fe and magnetic alloys) in the core. The process was optimized and the procedure to isolate encapsulates was elaborated. Carbon nanocapsules containing Fe were also obtained via combustion synthesis from mixtures NaN3-C6Cl6-Ferrocene. This technique also proved to be very efficient to produce silicon carbide nanowires from Teflon (PTFE) and different reductants (CaSi2, Si). The protocol to isolate and efficiently purify the final product (up to 98 wt%) was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.