Abstract

Metal-organic complexes were formed by means of inelastic excitations in a scanning tunneling microscope (STM). The electronic structure of the complex was characterized using STM imaging and spectroscopy. By exploiting the symmetry of the complex, its electronic structure can be rationalized from linear combinations of molecular orbitals. The actual bonding geometry, which cannot be inferred from STM alone, was determined from atomic force microscopy images with atomic resolution. Our study demonstrates that the combination of these techniques enables a direct quantification of the interplay of geometry and electronic coupling in metal-organic complexes in real space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.