Abstract

This work proposes a new technique for creating active bubbles and droplets with a non-magnetic core and a coating formed by a magnetic fluid. The procedure consists of the injection of a non-magnetic phase into a magnetic one that is supported by the presence of an inhomogeneous magnetic field from the source, which combines an annular magnet and an electromagnet. We explored various modes leading to different active bubbles and drops as well as the influence of the magnetic field on the size, velocity, and acceleration of the formed active droplets. It is shown that active bubbles change their trajectory under the action of a constant magnetic field and also disintegrate under the action of a pulsed one. This provides a new mechanism for controlling the absorption of droplets and bubbles using a magnetic field. Therefore, these results can be applied to create droplet-based microfluidics systems, in which an inhomogeneous magnetic field can be used for focusing droplet and bubble flows in a magnetic fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.