Abstract

Highly dispersed η-Al2O3-based nanopowders have been prepared via glycine–nitrate combustion followed by heat treatment in air. The resultant materials have been characterized by X-ray diffraction, Fourier transform IR spectroscopy, scanning electron microscopy, simultaneous thermal analysis, and other techniques. We have optimized the glycine-to-nitrate ratio (G/N = 0.2) and found heat treatment conditions for combustion products (isothermal holding at a temperature of 700°C for 6 h) that allow one to obtain single- phase nanocrystalline η-Al2O3 powders with an average particle size of 5 ± 1 nm and specific surface area of 54 ± 5 m2/g. The acid–base surface properties of the η-Al2O3 nanopowder have been analyzed using pyridine sorption–desorption processes as an example. The specific concentrations of weak, intermediate, and strong Lewis acid centers on the surface of the η-Al2O3 nanocrystals have been shown to markedly exceed those on the surface of commercially available γ-Al2O3 (A-64). The synthesized nanopowders can thus be used as effective supports of acid catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.