Abstract

Hydrogenase enzymes are currently under the international research spotlight due to emphasis on biologically produced hydrogen as one potential energy carrier to relinquish the requirement for 'fossil fuel' derived energy. Three major classes of hydrogenase exist in microbes all able to catalyze the reversible oxidation of dihydrogen to protons and electrons. These classes are defined by their active site metal content: [NiFe]-; [FeFe]- and [Fe]-hydrogenases. Of these the [NiFe]-hydrogenases have links to ancient forms of metabolism, utilizing hydrogen as the original source of reductant on Earth. This review progresses to highlight the Group 4 [NiFe]-hydrogenase enzymes that preferentially generate hydrogen exploiting various partner enzymes or ferredoxin, while in some cases translocating ions across biological membranes. Specific focus is paid to Group 4A, the Formate hydrogenlyase complexes. These are the combination of a six or nine subunit [NiFe]-hydrogenase with a soluble formate dehydrogenase to derived electrons from formate oxidation for proton reduction. The incidence, physiology, structure and biotechnological application of these complexes will be explored with attention on Escherichia coli Formate Hydrogenlyase-1 (FHL-1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call