Abstract
In this work we studied the evolution of the groove that forms the grain boundary (BG) when it emerges to a free surface, in the presence of different processes of matter transport. By using a confocal microscope, the shape of the grain edge groove was obtained in an ice sample with orientation< 1010 >/50◦ at −5◦C ; after keeping it 3 h in an environment with dry air. The shapes and depths of the grain boundary groove obtained experimentally, at regular time periods, were satisfactorily fitted considering a process of transport of matter developed by Srinivasan and Trivedi. In this model the transport of matter is mainly ruled by gaseous diffusion and not by surface diffusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.