Abstract

In [Arnon08, A framework for formalizing set theories based on the use of static set terms.] a new framework for formalizing mathematics was developed. The main new features of this framework are that it is based on the usual first-order set theoretical foundations of mathematics (in particular, it is type-free), but it reflects real mathematical practice in making an extensive use of statically defined abstract set terms of the form { x | p(i) }, in the same way they are used in ordinary mathematical discourse. In this paper we show how large portions of fundamental, scientifically applicable mathematics can be developed in this framework in a straightforward way, using just a rather weak set theory which is predicatively acceptable and essentially first-order. The key property of that theory is that every object which is used in it is defined by some closed term of the theory. This allows for a very concrete, computationally-oriented interpretation of the theory. However, the development is not committed to such interpretation, and can easily be extended for handling stronger set theories (including ZF).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.