Abstract

Mutual adaptation is critical for effective team collaboration. This paper presents a formalism for human-robot mutual adaptation in collaborative tasks. We propose the bounded-memory adaptation model (BAM), which captures human adaptive behaviors based on a bounded memory assumption. We integrate BAM into a partially observable stochastic model, which enables robot adaptation to the human. When the human is adaptive, the robot will guide the human towards a new, optimal collaborative strategy unknown to the human in advance. When the human is not willing to change their strategy, the robot adapts to the human in order to retain human trust. Human subject experiments indicate that the proposed formalism can significantly improve the effectiveness of human-robot teams, while human subject ratings on the robot performance and trust are comparable to those achieved by cross training, a state-of-the-art human-robot team training practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.