Abstract

Braneworld gravity is a model that endows physical space with an extra dimension. In the type II Randall-Sundrum braneworld gravity model, the extra dimension modifies the spacetime geometry around black holes, and changes predictions for the formation and survival of primordial black holes. We develop a comprehensive analytical formalism for far-field black hole lensing in this model, using invariant quantities to compute all geometric optics lensing observables. We then make the first analysis of wave optics in braneworld lensing, working in the semi-classical limit. We show that wave optics offers the only realistic way to observe braneworld effects in black hole lensing. We point out that if primordial braneworld black holes exist, have mass M, and contribute a fraction f of the dark matter, then roughly 3e5 x f (M/1e-18 Msun)^(-1) of them lie within our Solar System. These objects, which we call "attolenses," would produce interference fringes in the energy spectra of gamma-ray bursts at energies ~100 (M/1e-18 Msun)^(-1) MeV (which will soon be accessible with the GLAST satellite). Primordial braneworld black holes spread throughout the universe could produce similar interference effects; the probability for "attolensing" may be non-negligible. If interference fringes were observed, the fringe spacing would yield a simple upper limit on M. Detection of a primordial black hole with M <~ 1e-19 Msun would challenge general relativity and favor the braneworld model. Further work on lensing tests of braneworld gravity must proceed into the physical optics regime, which awaits a description of the full spacetime geometry around braneworld black holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.