Abstract

The photodissociation dynamics of roaming in formaldehyde are studied by comparing quasi-classical trajectory calculations performed on a new potential energy surface (PES) to new and detailed experimental results detailing the CO + H2 product state distributions and their correlations. The new PES proves to be a significant improvement over the past one, now more than a decade old. The new experiments probe both the CO and H2 products of the formaldehyde dissociation. The experimental and trajectory data offer unprecedented detail about the correlations between internal states of the CO and H2 dissociation products as well as information on how these distributions are different for the roaming and transition-state pathways. The data investigated include, for dissociation on the formaldehyde 2143 band, (a) the speed distributions for individual vibrational/rotational states of the CO products, providing information about the correlated internal energy distributions of the H2 product, and (b) the rotational and vibrational distributions for the CO and H2 products as well as the contributions to each from both the transition state and roaming channels. The agreement between the trajectory and experimental data is quite satisfactory, although minor differences are noted. The general agreement provides support for future use of the experimental techniques and the new PES in understanding the dynamics of photodissociative processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.