Abstract

Formaldehyde (FA), a ubiquitous environmental contaminant, has long been suspected of causing lung injury. However, the molecular and cellular mechanisms underlying this phenomenon remain elusive. The aim of this study was to elucidate the role of autophagy in lung injury induced by FA inhalation. In this study, lung weight coefficient, interleukin 8 in bronchoalveolar fluid, and histopathological examination were used to evaluate the lung injury. Moreover, electron microscopy, Western blotting for the ratio of LC3-II/LC3-I were used to detect autophagy in lung tissues. Our results indicated that the lung toxicity of FA inhalation is dose dependent. Lung weight coefficient, inflammatory response, and histopathological structure in the 0.5 mg/m3 FA exposure group showed no obvious changes compared with the control. However, exposure to 5 and 10 mg/m3 FA produced lung injury including pulmonary edema, histological changes, and inflammatory responses. Furthermore, the alterations of autophagy correlated with lung injury. Taken together, these data indicate that FA exposure triggers autophagy of alveolar epithelial cells, which might play a pivotal role in lung injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.