Abstract

This study was carried out to investigate the formaldehyde (FA) filtration pattern of additional media for indoor biofilter system. Dry pellet type activated carbon (PAC), activated clay (ACL), zeolite, diatomite, pumice and loess ceramic ball were tested. In the case of dry filter media, formaldehyde purification efficiency was the most excellent with activated clay and then was good with the activated carbon, diatomite, zeolite, and pumice order. PAC and ACL decreased the FA concentration with exponential pattern resulted from dynamic balance between emission and purification. Zeolite, diatomite, pumice, and loess ceramic ball showed high filtration rate at initial time and then increased FA concentration result from breakthrough. PAC, zeolite and diatomite could be recommended as additional filter media for biofilter system considering FA filtration and breakthrough characteristics. FA filtration and breakthrough characteristics were improved with wet media except PAC and ACL. In particular, purification performance improvement and breakthrough mitigation were higher in pumice and loess ceramic balls. PAC+ZEO mixing showed the most high purification performance and breakthrough mitigation in all mixing methods. Thus mixture of PAC with zeolite and vertical mixing could be recommended as additional filter media to improve the FA purification ability and pressure drop with indoor air biofilter system. Keywords: Activated carbon, Activated clay, Ceramic loess, Diatomite, Zeolite

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.