Abstract

We present an approach for formally verifying that a high-level microprocessor model behaves as defined by an instruction-set architecture. The technique is based on a specialization of self consistency called incremental flushing and reduces the need and effort required to create manually-generated implementation abstractions. Additionally, incremental flushing reduces the computational complexity of the proof obligations generated when reasoning about out-of-order execution. This is accomplished by comparing the functional behavior of the implementation abstraction over two sets of inputs: one that represents normal operation and one that is simpler, but functionally equivalent. The approach is illustrated on a simple out-of-order microprocessor core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.