Abstract
Formal methods are increasingly being used for control and verification of dynamic systems against complex specifications. In general, these methods rely on a relatively simple system model, such as a transition graph, Markov chain, or Markov decision process, and require abstraction of the original continuous-state dynamics. It can be difficult or impossible, however, to find a perfectly equivalent abstraction, particularly when the original system is stochastic. Here we develop an abstraction procedure that maps a discrete-time stochastic system to an Interval-valued Markov Chain ( IMC ) and a switched discrete-time stochastic system to a Bounded-parameter Markov Decision Process ( BMDP ). We construct model checking algorithms for these models against Probabilistic Computation Tree Logic ( PCTL ) formulas and a synthesis procedure for BMDP s. Finally, we develop an efficient refinement algorithm that reduces the uncertainty in the abstraction. The technique is illustrated through simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.