Abstract
Borrelidin (1) is a polyketide that possesses extremely potent anti-angiogenesis activity. This paper describes its formal total synthesis by the most efficient route to date. This modular approach takes optimal benefit of asymmetric catalysis and permits the synthesis of analogues; in addition, the high yields and selectivities obtained eliminate the need for separation of stereoisomers. The upper half of borrelidin has been accessed by iterative copper-catalysed asymmetric conjugate addition of methylmagnesium bromide, whereas synthesis of the lower half of the molecule was achieved by relying on asymmetric hydrogenation and cross-methathesis as key steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.