Abstract
Component-based programming frameworks for industrial control logic development promise to shorten development and modification times, and to reduce programming errors. To get these benefits, it is, however, important that the components are specified and verified to work properly. This work introduces <emphasis emphasistype="boldital" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Reusable Automation Components</emphasis> (RACs), which contain not only the implementation details but also a formal specification defining the correct use and behaviour of the component. This formal specification uses temporal logic to describe time-related properties and has a special structure developed to meet industrial control needs. The RAC can be formally verified, to determine whether the implementation fulfils the specification or not. A RAC prototype development tool has been developed to demonstrate this capability. The main difference between the RAC and other frameworks for formal verification of control logic is the specification modeling. In RAC, not only the implementation but also the specification is based on the structure and languages of conventional control logic, aiming at being easy to comprehend for control logic engineers. Several industrial examples are discussed in this paper, showing the benefits and potential of the framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.