Abstract
This paper provides a new algorithm for the formal reduction of linear differential systems with Laurent series coefficients. We show how to obtain a decomposition of Balser, Jurkat and Lutz using eigenring techniques. This allows us to establish structural information on the obtained indecomposable subsystems and retrieve information on their invariants such as ramification. We show why classical algorithms then perform well on these subsystems. We also give precise estimates of the precision on the power series which is required in each step of our algorithm. The algorithm is implemented in Maple and examples are given in Saade (2018).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.