Abstract
We focus on families of Pawlak approximation spaces, called multiple-source approximation systems (MSASs). These reflect the situation where information arrives from multiple sources. The behaviour of rough sets in MSASs is investigated – different notions of lower and upper approximations, and definability of a set in a MSAS are introduced. In this context, a generalized version of an information system, viz. multiple-source knowledge representation (KR)- system, is discussed. Apart from the indiscernibility relation which can be defined on a multiple-source KR-system, two other relations, viz. similarity and inclusion are considered. To facilitate formal reasoning with rough sets in MSASs, a quantified propositional modal logic LMSAS is proposed. Interpretations for sets of well-formed formulae (wffs) of LMSAS are defined on MSASs, and the various properties of rough sets in MSASs translate into logically valid wffs of the system. LMSAS is shown to be sound and complete with respect to this semantics. Some decidable problems are addressed. In particular, it is shown that for any LMSAS-wff α , it is possible to check whether α is satisfiable in a certain class of interpretations with MSASs of a given finite cardinality. Moreover, it is also decidable whether any wff α is satisfiable in the class of all interpretations with MSASs having domain of a given finite cardinality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.