Abstract
With the ever-growing interest in the usage of minimally-invasive surgery, surgical robots are also being extensively used in the operation theaters. Given the safety-critical nature of these surgeries, ensuring the accuracy and safety of the control algorithms of these surgical robots is an absolute requirement. However, traditionally these algorithms have been analyzed using simulations and testing methods, which provide in-complete and approximate analysis results due to their inherent sampling-based nature. We propose to use probabilistic model checking, which is a formal verification method for quantitative analysis of systems, to verify the control algorithms of surgical robots. The paper provides a formal analysis of a virtual fixture control algorithm, implemented in a neuro-surgical robot, using the PRISM model checker. We have been able to verify some probabilistic properties about the out-of-boundary problem for the given algorithm and found some new insights, which were not gained in a previous attempt of using formal methods in the same context. For validation, we have also done some experiments by running the considered algorithm on the Al-Zahrawi surgical robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.