Abstract
This paper presents an operator calculus approach to computing with non-commutative variables. First, we recall the product formulation of formal exponential series. Then we show how to formulate canonical boson calculus on formal series. This calculus is used to represent the action of a Lie algebra on its universal enveloping algebra. As applications, Hamilton's equations for a general Hamiltonian, given as a formal series, are found using a double-dual representation, and a formulation of the exponential of the adjoint representation is given. With these techniques one can represent the Volterra product acting on the enveloping algebra. We illustrate with a three-step nilpotent Lie algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.