Abstract

For classical polynomials orthogonal with respect to a positive measure supported on the real line, the moment matrix is Hankel and positive definite. The polynomials satisfy a three term recurrence relation. When the measure is supported on the complex unit circle, the moment matrix is positive definite and Toeplitz. Then they satisfy a coupled Szegő recurrence relation but also a three term recurrence relation. In this paper we study the generalization for formal polynomials orthogonal with respect to an arbitrary moment matrix and consider arbitrary Hankel and Toeplitz matrices as special cases. The relation with Padé approximation and with Krylov subspace iterative methods is also outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.