Abstract
Process discovery, as one of the most challenging process analysis techniques, aims to uncover business process models from event logs. Many process discovery approaches were invented in the past twenty years; however, most of them have difficulties in handling multi-instance sub-processes. To address this challenge, we first introduce a multi-instance business process model (MBPM) to support the modeling of processes with multiple sub-process instantiations. Formal semantics of MBPMs are precisely defined by using multi-instance Petri nets (MPNs) that are an extension of Petri nets with distinguishable tokens. Then, a novel process discovery technique is developed to support the discovery of MBPMs from event logs with sub-process multi-instantiation information. In addition, we propose to measure the quality of the discovered MBPMs against the input event logs by transforming an MBPM to a classical Petri net such that existing quality metrics, e.g., fitness and precision, can be used. The proposed discovery approach is properly implemented as plugins in the ProM toolkit. Based on a cloud resource management case study, we compare our approach with the state-of-the-art process discovery techniques. The results demonstrate that our approach outperforms existing approaches to discover process models with multi-instance sub-processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.