Abstract
Critical control systems are often built as a combination of a control core with safety mechanisms allowing to recover from failures. For example a PID controller used with triplicated inputs and voting. Typically these systems would be designed at the model level in a synchronous language like Lustre or Simulink, and their code automatically generated from these models. We present a new analysis framework combining the analysis of open-loop stable controllers with safety constructs (redundancy, voters, ...). We introduce the basic analysis approaches: abstract interpretation synthesizing quadratic invariants and backward analysis based on quantifier elimination and convex hull computation synthesizing linear invariants. Then we apply it on a simple but representative example that no other available state-of-the-art technique is able to analyze. This contribution is another step towards early use of formal methods for critical embedded software such as the ones of the aerospace industry.KeywordsFormal MethodAbstract InterpretationProof ObligationPolicy IterationAbstract DomainThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.