Abstract

SummaryThis chapter presents how the formal methods can be used to analyse biological regulatory networks, which are at the core of all biological phenomena as, for example, cell differentiation or temperature control. The dynamics of such a system, i.e. its semantics, is often described by an ordinary differential equation system, but has also been abstracted into a discrete formalism due to R. Thomas. This second description is well adapted to stateof-the-art measurement techniques in biology, which often provide qualitative and coarse-grained descriptions of biological regulatory networks. This formalism permits us to design a formal framework for analysing the dynamics of biological systems. The verification tools, as model checking, can then be used not only to verify if the modelling is coherent with known biological properties, but also to help biologists in the modelling process. Actually, for a given biological regulatory network, a large class of semantics can be automatically built and model checking allows the selection of the semantics, which are coherent with the biological requirement, i.e. the temporal specification. This modelling process is illustrated with the well studied genetic regulatory network controlling immunity in bacteriophage lambda.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.