Abstract

Traffic incident management (TIM) is a multijurisdictional process. Complications with communications, compatibility, coordination, institutional responsibilities, and legal issues are inherent in TIM systems. Increased delay in incident clearance due to various conflicts has vital economical, safety, environmental, and social impacts. Therefore, a thorough and rigorous modeling of the system is necessary to better understand its properties and systematically discern issues that may arise. The goal of this study is to develop modeling tools for the incident management process. Formal language automata theory is proposed for modeling and analysis since incident management can be viewed as a series of discrete events. Using formal methods allows us to use tools that are well established in this field to systematically study incident management processes. Formal language and automata theory are the foundation for numerous hardware and software development with applications in digital design, compilers, and programming languages. Formal language and automata theory provide us with powerful tools for developing, analyzing, and debugging such models. A systematic structure of an incident management model permits methodical identification of the system's “bugs.” This study demonstrates the development of models of some first response incident management agencies through a case study in the Las Vegas, NV, area using formal languages and automata theory. Sequence properties such as safety and liveness are verified for the developed models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call