Abstract

We address the integrability conditions of the inverse problem of the calculus of variations for time-dependent SODE using the Spencer version of the Cartan-K\"ahler theorem. We consider a linear partial differential operator $P$ given by the two Helmholtz conditions expressed in terms of semi-basic 1-forms and study its formal integrability. We prove that $P$ is involutive and there is only one obstruction for the formal integrability of this operator. The obstruction is expressed in terms of the curvature tensor $R$ of the induced nonlinear connection. We recover some of the classes of Lagrangian semisprays: flat semisprays, isotropic semisprays and arbitrary semisprays on 2-dimensional manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.