Abstract

Hot stamping and cold die quenching has been developed in forming complex shaped structural components of metals. The aim of this study is the first attempt to develop unified viscoplastic damage constitutive equations to describe the thermo-mechanical response of the metal and to predict the formability of the metal for hot stamping applications. Effects of parameters in the damage evolution equation on the predicted forming limit curves were investigated. Test facilities and methods need to be established to obtain experimental formability data of metals in order to determine and verify constitutive equations. However, conventional experimental approaches used to determine forming limit diagrams (FLDs) of sheet metals under different linear strain paths are not applicable to hot stamping conditions due to the requirements of rapid heating and cooling processes prior to forming. A novel planar biaxial testing system was proposed before and was improved and used in this work for formability tests of aluminium alloy 6082 at various temperatures, strain rates and strain paths after heating, soaking and rapid cooling processes. The key dimensions and features of cruciform specimens adopted for the determination of forming limits under various strain paths were developed, optimised and verified based on the previous designs and the determined heating and cooling method [1]. The digital image correlation (DIC) system was adopted to record strain fields of a specimen throughout the deformation history. Material constants in constitutive equations were determined from the formability test results of AA6082 for the prediction of forming limits of alloys under hot stamping conditions. This research, for the first time, enabled forming limit data of an alloy to be generated at various temperatures, strain rates and strain paths and forming limits to be predicted under hot stamping conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.