Abstract

A new deep drawing process with a localized heating and cooling technique was developed to improve sheet forming of a magnesium alloy which is very difficult by conventional methods at room temperature. The objective of this study is to clarify how much the formability of a magnesium alloy sheet can be enhanced by using the new technique. A magnesium alloy sheet of 0.5 mm thickness was used. Deep drawing experiments were conducted at a temperature of about 400 °C for the blank and deep drawing tool (holder and die) and at a punch speed of 200 mm/min. As a result, the drawn cup height of 115 mm was achieved by using both the local heating and cooling technique and the variable blank holder pressure (BHP) technique. It was confirmed that the deep drawing performance of the magnesium alloy can be considerably enhanced using the appropriate temperature distribution for the local heating and cooling technique and with variable BHP control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.