Abstract

Accurate prediction of the formability in multistage forming process is very challenging due to the dynamic shift of limiting strain during the different stages depending on the tooling geometry and selection of the process parameters. Hence, in the present work, a mathematical framework is proposed for the estimation of stress based and polar effective plastic strain-forming limit diagram (σ- and PEPS-FLD) using the Barlat-89 anisotropic plasticity theory in conjunction with three different hardening laws such as Hollomon, Swift, and modified Voce equation. Two-stage stretch forming setup had been designed and fabricated to first prestrain in an in-plane stretch forming setup, and, subsequently, limiting dome height (LDH) testing was carried out on the prestrained blanks in the second stage to evaluate the formability. The finite element (FE) analysis of these two-stage forming process was carried out in ls-dyna for automotive grade dual-phase (DP) and interstitial-free (IF) steels, and the σ-FLD and PEPS-FLD were used as damage model to predict failure. The predicted forming behaviors, such as LDH, thinning development, and the load progression, were validated with the experimental results. It was found that the LDH in the second stage decreased with increase in the prestrain amount, and both the σ-FLD and PEPS-FLD could be able to predict the formability considering the deformation histories in the present multistage forming process with complex strain path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.