Abstract

Geiger domes are composed of cable and strut elements. This property of cable domes is the same as tensegrity structures, but in contraction to tensegrity structures, strut elements do not have a function that balances tension in cable elements with compression. In this study, a new cable dome configuration, that mimics the form of tensegrities, is proposed which is able to spread effect of an applied load into all elements of the dome and reduces its local impact. Form-finding and analysis of the Geiger and new dome configurations are performed based on the principle of minimum potential energy. Self-equilibrium forms with minimum potential energy are determined using genetic algorithms. The ability of genetic algorithm based potential energy minimization approach to perform form-finding of loaded or load free cable domes is investigated. Performance of the proposed configuration is tested and compared with the Geiger configuration under various loading conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.