Abstract

AbstractThe radiosity technique uses the heat transfer theory to define a view‐independent illumination model. For complex scenes, calculation of this model is very time‐intensive, due largely to the determination of a geometric factor, defined with a double area integral, and named form factor. This paper presents a new expression of the form factor, which can be reformulated, in a computationally more efficient manner, as a simple line integral for planar polygonal convex surfaces that are perfectly diffuse.Recently, parallel computers have been used to decrease calculation time. Previous work is focused mainly on distributed implementations of a method, the progressive refinement method, widely used for complex environments. The T.Node is a completely reconfigurable MIMD machine, based on the transputer chip. In this paper, we compare a parallel implementation of the progressive refinement method with a direct method which takes into account the memory capabilities of this kind of machine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.