Abstract
We develop a form factor approach to the study of dynamical correlation functions of quantum integrable models in the critical regime. As an example, we consider the quantum non-linear Schrödinger model. We derive the long-distance/long-time asymptotic behavior of various two-point functions of this model. We also compute edge exponents and amplitudes characterizing the power-law behavior of dynamical response functions on the particle–hole excitation thresholds. These last results confirm predictions based on the non-linear Luttinger liquid method. Our results rely on a first principles derivation, based on a microscopic analysis of the model, without invoking, at any stage, any correspondence with a continuous field theory. Furthermore, our approach only makes use of certain general properties of the model, so that it should be applicable, possibly with minor modifications, to a wide class of (not necessarily integrable) gapless one-dimensional Hamiltonians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.