Abstract
I review here form, or textural, birefringence (ΔF) in the context of advances in the field, as well as with regard to findings and applications in the physics of photonic devices, fibers maintaining polarization, photonic crystal fibers, and in biopolymers present in extracellular matrices and the myelin sheath. Some advantages of applying knowledge of ΔF to biological fields involving biopolymers, especially collagen fibers, are considered in more detail. Tendon and cartilage collagen fibers have been regarded as a model of dense, highly aggregated biopolymers with preferential orientations. Owing to their supramolecular organization, such materials may be used to study molecular order by using anisotropic optical properties, especially ΔF. Differences between collagen type I- and collagen type II-rich structures, and similarities between collagen crimp and second harmonic generation images are reported. Based on data reported here, it is possible to deduce that collagen type I supramolecular organization has nonlinear optical properties and that tendon segments can conduct red laser light. With respect to nerve fibers, the detection and measurements of ΔF have allowed the myelin sheath to be considered a smectic liquid crystal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.