Abstract

ON-OFF amacrine cells were studied with whole cell recording techniques and intracellular staining methods using intact retina-eyecup preparations of the tiger salamander (Ambystoma tigrinum) and the mudpuppy (Necturus maculosus). Morphological characterization of these cells included three-dimensional reconstruction methods based on serial optical sections obtained with a confocal microscope. Some cells had their detailed morphology digitized with a computer-assisted tracing system and converted to compartmental models for computer simulations. The dendrites of ON-OFF amacrine cells have spines and numerous varicosities. Physiological recordings confirmed that ON-OFF amacrine cells generate both large- and small-amplitude impulses attributed, respectively, to somatic and dendritic generation sites. Using a multichannel model for impulse generation, computer simulations were carried out to evaluate how impulses are likely to propagate throughout these structures. We conclude that the ON-OFF amacrine cell is organized with multifocal dendritic impulse generating sites and that both dendritic and somatic impulse activity contribute to the functional repertoire of these interneurons: locally generated dendritic impulses can provide regional activation, while somatic impulse activity results in rapid activation of the entire dendritic tree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.