Abstract

BackgroundNatural compounds have been demonstrated to lower breast cancer risk and sensitize tumor cells to anticancer therapies. Recently, we demonstrated that vernodalin (the active constituent of the medicinal herb Centratherum anthelminticum seeds) induces apoptosis in breast cancer cell-lines. The aim of this work was to gain an insight into the underlying anticancer mechanism of vernodalin using in vitro and in vivo model.MethodsVernodalin was isolated through the bioassay guided fractionation from the seeds. The protein expression of p-Akt, PI3K, FOXO3a, Bim, p27kip1, cyclinD1, and cyclinE was examined by the Western blot analysis. Immunoprecipitation assays were performed to analyse Akt kinase activity. Small interfering RNA (siRNA) was used to study the role of FOXO3a upregulation and their targets during vernodalin treatment. Immunofluorescence, subcellular localisation of FOXO3a by Western blot was performed to analyse FOXO3a localisation in nucleus of breast cancer cells. Immunohistochemical analysis of PCNA, Ki67, p27kip1, FOXO3a and p-FOXO3a in the LA7-induced mammary gland tumor model was performed.ResultsOur results showed that vernodalin regulates cancer cell apoptosis through activation of FOXO transcription factors and its downstream targets (Bim, p27Kip1, p21Waf1/cip1, cyclin D1, cyclin E) as examined by Western blots. Furthermore, we showed that FOXO3a/PI3K-Akt played a significant role in vernodalin induced apoptosis in breast cancer cells. Immunoprecipitation assays showed Akt kinase activity was downregulated. Immunofluorescence, subcellular fractionation and Western blot showed FOXO3a accumulation in the nucleus of breast cancer cells after vernodalin treatment. Silencing of FOXO3a protected breast cancer cells against vernodalin induced apoptosis. The anti-tumor action of vernodalin was further confirmed by examining cell proliferative markers, PCNA and Ki67 in the LA7-induced mammary gland tumor model. We also corroborated our findings in vivo by showing upregulation of p27Kip1, FOXO3a and decrease in the p-FOXO3a level in vernodalin-treated breast tumor tissue.ConclusionsOur results suggest that PI3K-Akt/FOXOa pathway is a critical mediator of vernodalin-induced cytotoxicity and this compound could be further developed as a potential chemopreventive or chemotherapeutic agent for breast cancer therapy.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-015-0266-y) contains supplementary material, which is available to authorized users.

Highlights

  • Natural compounds have been demonstrated to lower breast cancer risk and sensitize tumor cells to anticancer therapies

  • In this study we embarked to evaluate whether vernodalin could affect FOXO3a expression in human breast cancer cell-lines (MCF-7 and MDA-MB231)

  • Our results showed that vernodalin dose dependently (6.25, 9.5 and 12 μg/ml) induced higher expression of FOXO3a in both MCF-7 and MDA-MB231 cells

Read more

Summary

Introduction

Natural compounds have been demonstrated to lower breast cancer risk and sensitize tumor cells to anticancer therapies. Breast cancer is the third leading cause of cancer deaths and highest among women aged between 20 and 59 years based on a cancer statistics in 2013 [1]. Breast cancer development and metastasis is a multistep process, often caused by dysfunction of several regulatory features those keep cells in check [3]. Continents such as North America, Western Europe and Australia have been reported to have the highest incidence rates. There is a relative lack of effective therapies for advanced-stage metastatic disease [5]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.