Abstract

BackgroundAdditional mechanisms of temozolomide (TMZ) resistance in gliomas remain uncertain. The aim of this study was to identify another DNA repair mechanism involving forkhead box O1 (FoxO1) and replicator C2 (RFC2) in gliomas.MethodsWe established glioma cells against TMZ, U87R, by exposure to TMZ. Proliferation rate Cell counting kit-8 (CCK8) was used, and epithelial-mesenchymal transition (EMT)-related markers were detected by western blot. The association between FoxO1 and RFC2 was analyzed by heat maps and scatter plot, and Real-time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of FoxO1 on the expression of RFC2. The regulation effect of FoxO1 on RFC2 expression was analyzed by luciferase reporter gene assay. Knockdown of FoxO1/RFC2 was achieved via short hairpin RNA (shRNA), the effect of knockdown on the proliferation was determined by CCK8 assay and colony formation assay, and apoptosis was examined by flow cytometry and immunoblotting.ResultsThe TMZ-resistant glioma cell line, U87R, was established. The FoxO1 and RFC2 proteins increased significantly in U87R. The expression of FoxO1 and RFC2 were positively related in glioma tissues. We found that FoxO1 contributes to TMZ resistance and cell survival via regulating the expression of RFC2. Moreover, FoxO1 functions as a transcriptional activator to RFC2 by binding to the promoter of RFC2. Furthermore, knockdown of FoxO1/RFC2 suppressed cell proliferation, TMZ resistance, and induced apoptosis in U87R.ConclusionsThe FoxO1/RFC2 signaling pathway promotes glioma cell proliferation and TMZ resistance, suggesting that the FoxO1/RFC2 pathway may be a potential target for TMZ-resistant glioma therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.