Abstract

Existing data storage systems offer a wide range of functionalities to accommodate an equally diverse range of applications. However, new classes of applications have emerged, e.g., blockchain and collaborative analytics, featuring data versioning, fork semantics, tamper-evidence or any combination thereof. They present new opportunities for storage systems to efficiently support such applications by embedding the above requirements into the storage. In this paper, we present ForkBase , a storage engine designed for blockchain and forkable applications. By integrating core application properties into the storage, ForkBase not only delivers high performance but also reduces development effort. The storage manages multiversion data and supports two variants of fork semantics which enable different fork worklflows. ForkBase is fast and space efficient, due to a novel index class that supports efficient queries as well as effective detection of duplicate content across data objects, branches and versions. We demonstrate ForkBase 's performance using three applications: a blockchain platform, a wiki engine and a collaborative analytics application. We conduct extensive experimental evaluation against respective state-of-the-art solutions. The results show that ForkBase achieves superior performance while significantly lowering the development effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call