Abstract

Forgotten natural products offer value as antimicrobial scaffolds, providing diverse mechanisms of action that complement existing antibiotic classes. This study focuses on the derivatization of the cytotoxin blasticidin S, seeking to leverage its unique ribosome inhibition mechanism. Despite its complex zwitterionic properties, a selective protection and amidation strategy enabled the creation of a library of blasticidin S derivatives including the natural product P10. The amides exhibited significantly increased activity against Gram-positive bacteria and enhanced specificity for pathogenic bacteria over human cells. Molecular docking and computational property analysis suggested variable binding poses and indicated a potential correlation between cLogP values and activity. This work demonstrates how densely functionalized forgotten antimicrobials can be straightforwardly modified, enabling the further development of blasticidin S derivatives as lead compounds for a novel class of antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call