Abstract
In the present paper, the aluminum alloy i.e. LM6 based composites reinforced with different weight fraction of SiC particles was produced by stir cast technique and the effect of reinforced ratios on the forgeability and the machinability was examined. The test results show that the increment in weight fraction of reinforcement particles in the matrix metal produced better mechanical property like hardness but the forgeability of the cast MMCs decreases. The forgeability of the as cast MMCs were also varied with the change in thickness of the casting. The results show that the forgeability of cast metal matrix composites at the mid section of the casting is minimum compared to both end section of a three-step casting. The effect of machining parameters, e.g. cutting speed and depth of cut on the surface roughness and cutting forces at constant feed rate was investigated during experimentation. The results show that higher weight percentage of SiCp reinforcement produced a higher surface roughness and needs higher cutting forces during machining operation. It has also observed that the depth of cut and the cutting speed at constant feed rate affected the surface roughness and the cutting forces. This practical research analysis and test results on the forgeability and machinability of Al/SiC-MMC will provide useful guidelines to the present day manufacturing engineers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Minerals and Materials Characterization and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.