Abstract

Amazon rainforest has been subjected to particularly high rates of deforestation caused mainly by the expansion of cattle pasture and agriculture. A commonly observed response to land-use change is a negative impact on biodiversity of plant and animal species. However, its effect on the soil microbial community and ecosystem functioning is still poorly understood. Here, we used a DNA metagenomic sequencing approach to investigate the impact of land-use change on soil microbial community composition and its potential functions in three land-use systems (primary forest, pasture and secondary forest) in the Amazon region. In general, the microbial community structure was influenced by changes in soil physicochemical properties. Aluminum and water-holding capacity significantly correlated to overall community structure and most of microbial phyla. Taxonomic changes were followed by potential functional changes in the soil microbial community, with pasture presenting the most distinct profile in comparison with other sites. Although taxonomic structure was very distinct among sites, we observed a recovery of the potential functions in secondary forest after pasture abandonment. Our findings elucidate a significant shift in belowground microbial taxonomic and potential functional diversity following natural forest re-establishment and have implications for ecological restoration programs in tropical and sub-tropical ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call