Abstract

AbstractIn forest ecosystems, many functional processes are governed by local canopy gap dynamics, caused by either natural or anthropogenic factors. Quantifying the size and spatial distribution of canopy gaps enables an improved understanding and predictive modelling of multiple environmental phenomena. For instance knowledge of canopy gap dynamics can help us elucidate time‐integrated effects of tree mortality, regrowth and succession rates, carbon flux patterns, species heterogeneity and three‐dimensional spacing within structurally complex forest ecosystems.Airborne Laser Scanning (ALS) has emerged as a technology that is well‐suited for mapping forest canopy gaps in a wide variety of forest ecosystems and across spatial scales. New technological and algorithmic advances, including ALS remote‐sensing, coupled with optimized frameworks for data processing and detection of forest canopy gaps, are allowing an enhanced understanding of forest structure and functional processes.This paper introducesForestGapR,a cutting‐edge open sourcerpackage for forest gap analysis from canopy height models derived from ALS and other remote sensing sources. TheForestGapRpackage offers tools to (a) automate forest canopy gap detection, (b) compute a series of gap statistics, including gap‐size frequency distributions and spatial distribution, (c) map gap dynamics (when multitemporal ALS data are available) and (d) convert forest canopy gaps detected into raster or vector layers as per user requirements.As case studies, we runForestGapRon ALS data collected over four different tropical forest regions worldwide. We hope this new package will enable further research towards understanding the distribution, dynamics and role of canopy gaps not only in tropical forests, but in other forest types elsewhere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.