Abstract

Eucalyptus plantations play an important role in the timber supply and global warming mitigation around the world. Forest age is a critical factor for evaluating and modeling forest structure (e.g., diameter at breast height (DBH), height (H), aboveground carbon stocks (ACS)) and their dynamics. Recently, the spatial distribution of forest age at different scales based on time series remote sensing data has been widely investigated. However, it is unclear whether such data can effectively support the simulation and assessment of forest structure, especially in fast-growing plantation forests. In this study, the physiological principles in predicting growth (3-PG) model was firstly optimized and calibrated using survey and UAV lidar data at the sample plot (SP) scale, and was then applied at the forest sub-compartment (FSC) scale by designing different simulation scenarios driven by different forest age data sources and adjustments. The sensitivity of the simulated forest structure parameters to forest age was assessed at the SP and FSC levels. The results show that both the survey forest age data and the remote-sensing-derived forest age data could accurately estimate the DBH, H, and ACS of eucalyptus plantations with the coefficients of determination (R2) ranging from 0.87 to 0.94, and the relative root mean square error (RRMSE) below 20% at SP level. At the FSC level, the simulation results based on remotely sensed forest age data are significantly better than FSC forest age data from surveys by forestry bureaus, with R2 of ACS 0.7, RMSE 9.12 Mg/ha, and RRMSE 28.24%. The results of the sensitivity analysis show that the DBH, H, and ACS show different degrees of variation under different adjusted forest ages at SP and FSC level. The maximum difference in ACS is 82.91% at the SP scale if the forest age decreases 12 months and 41.23% at the FSC scale if the forest age increases 12 months. This study provides an important reference for future studies using forest age data obtained by remote sensing to drive the forest carbon model in a large spatial scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.