Abstract

Multiple classifiers on the dissimilarity space are proposed to address the problem of forest species recognition from microscopic images. To that end, classical texture-based features such as Gabor filters, local binary patterns (LBP) and local phase quantization (LPQ), as well as two keypoint-based features, the scale-invariant feature transform (SIFT) and the speeded up robust features (SURF), are used to generate a pool of diverse classifiers on the dissimilarity space. A comprehensive set of experiments on a database composed of 2,240 microscopic images from 112 different forest species was used to evaluate the performance of each individual classifier of the generated pool, the combination of all classifiers, and different dynamic selection of classifiers (DSC) methods. The best result (93.03 %) was observed by incorporating probabilistic information in a DSC method based on multiple classifier behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.