Abstract

Understanding how severe disturbances and their interactions affect forests is key to projecting ecological change under a warming climate. Substantial increases in some biotic disturbances, such as bark beetle outbreaks, in temperate forest ecosystemsmay compromise recovery to a forest vegetation type (i.e., physiognomic recovery or resilience), especially if subsequent biotic disturbances (e.g., herbivory) alter recovery mechanisms. From 2005 to 2017, severe outbreaks (>90% mortality) of spruce bark beetles (SB, Dendroctonus rufipennis) affected Engelmann spruce (Picea engelmannii) across 325,000ha of spruce and subalpine fir (Abies lasiocarpa) forest in the southern Rocky Mountains, USA. Concurrently, an outbreak of western balsam bark beetle (WBBB, Dryocoetes confuses) infested subalpine fir across at least 47,000 of these hectares. We explored the capacity of 105 stands affected by one or two bark beetle outbreaks and browsing of juvenile trees by ungulates to return to a forest vegetation type in the context of pre-outbreak forest conditions and topography. Nine initial forest trajectories (i.e., at least several decades) were identified from four pre-outbreak forest types affected by three biotic disturbances that occurred at different spatial scales and severities. Most stands (86%) contained surviving nonhost adult trees in the main canopy (fir and aspen [Populus tremuloides]) and many surviving juveniles of all species, implying that they are currently on a trajectory for physiognomic recovery. Stands composed exclusively of large-diameter spruce were affected by a severe SB outbreak and were most vulnerable to a transition to a low-density forest, below regional stocking levels (<370trees/ha). Greater pre-outbreak stand structural complexity and species diversity were key traits of stands with a higher potential for physiognomic recovery. However, all multispecies stands shifted in relative composition of the main canopy to nonhost species, suggesting low potential for compositional recovery over the next several decades. Most post-outbreak stands (86%) exceeded regional stocking levels with trees taller than the browse zone (<2m). As such, ungulate browsing on over half of all juveniles will primarily affect the rate of infilling of the forest canopy and preferential browsing of more palatable species will influence the composition of the future forest canopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.